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1
MEMORY CONSUMPTION TRACKING

BACKGROUND

In computer systems, memory is a limited hardware
resource that must be shared by multiple processes. Modern
computer systems utilize memory management to dynami-
cally allocate portions of main memory to one or more
processes or objects for execution by the processor. Many
applications utilize a large amount of memory, which can
result in low memory or out of memory (OOM) conditions
where no additional memory can be allocated for use by
other programs or the operating system.

Accordingly, there is a need for improved systems and
methods for monitoring memory consumption in virtualized
environments.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is an example block diagram illustrating virtual
memory and physical memory organization in accordance
with embodiments of the present invention.

FIG. 2 is an example block diagram of an e-reader
computing device implementing the virtual and physical
memory organization illustrated in FIG. 1, in accordance
with embodiments of the present invention.

FIG. 3 is a block diagram illustrating an exemplary
environment in which embodiments of the present invention
may be implemented.

FIGS. 4A-4G are screen shots of an exemplary memory
analysis application, in accordance with embodiments of the
present invention.

DETAILED DESCRIPTION

In the following description, reference is made to the
accompanying drawings which illustrate several embodi-
ments of the present disclosure. It is to be understood that
other embodiments may be utilized and system or process
changes may be made without departing from the spirit and
scope of the present disclosure. The following detailed
description is not to be taken in a limiting sense, and the
scope of the embodiments of the present invention is defined
only by the claims of the issued patent. It is to be understood
that drawings are not necessarily drawn to scale.

Virtual memory systems separate the memory addresses
used by a process from actual physical addresses by assign-
ing the process to a virtual address space, thereby increasing
the effectively available amount of main memory by swap-
ping to secondary storage. Unfortunately, many applications
utilize a large amount of memory, which can result in low
memory or out of memory (00M) conditions where no
additional memory can be allocated for use by other pro-
grams or the operating system. As described above, many
advanced computer systems utilize garbage collection pro-
cesses to reclaim memory.

Some computing devices, such as e-reader devices, are
intended for a narrow range of functions, e.g., displaying
e-books or other static digital media content (often primarily
text-based with limited or no graphics), shopping for digital
content, and managing device settings. Accordingly, these
e-reader devices are often designed with much more limited
hardware resources than other mobile computing devices
such as tablet computers or smartphones, which are
designed to run a large variety of processor and memory
intensive applications. For example, some e-reader devices
may have, for example, 2 GB, 1056 MB, 512 MB, 256 MB,
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2

128 MB, or less in main memory. Similarly, computing
devices with small form factors may also have limited
hardware resources due to space and cost constraints.
Memory management can be particularly important for these
types of devices having limited hardware resources, includ-
ing limited main memory capacity of, e.g., less than 2 GB or
less than 1056 MB, and a single core low power processor,
since even small file I/O operations can cause a significant
impact on performance.

One key aspect of testing new software releases for
e-readers or other computing devices is the tracking of
memory consumption. The testing is important to ensure that
each new software release will not cause excessive low
memory conditions when the device is operated by end
users. However, in many computer systems, particularly
those that utilize application virtual machines which simul-
taneously run multiple threads corresponding to different
processes, it can be difficult to precisely monitor memory
consumption and to identify which processes resulted in
undesirably low memory conditions.

In accordance with aspects of the present invention,
systems and methods are provided for monitoring memory
consumption in computing devices. These systems and
methods are particularly advantageous for computing
devices executing monolithic processes which perform mul-
tiple functions for the device, such as e-reader devices
whose functionality is implemented using an application
virtual machine. The consumption of memory by these
monolithic processes can be difficult to track over various
use case scenarios, as these types of systems typically do not
include tools for monitoring memory consumption by each
individual function or operation. Instead, the memory moni-
toring can be performed by tracking multiple parameters on
both a regular schedule and in response to the detection of
certain events. These memory parameters can include Sys-
tem Free, Process Memory, and Stack Trace, as will be
described in greater detail below. These systems and meth-
ods may be implemented for the monitoring of production
devices operated by the e-reader end users, or may be
implemented for the pre-release testing of pre-production
devices or pre-production software releases. In production
devices, these memory parameters can be stored locally in a
memory log on the device’s secondary storage and then
transmitted to a remote test system for detailed analysis and
comparison with the memory logs from other devices. This
analysis can be used to evaluate memory performance in the
field for these production devices, and also to define
Memory Acceptance Tests (“MAT”) for exercising a variety
of use cases on future pre-production devices or pre-pro-
duction software releases. These MATs can be used to
quantify overall device memory health before releasing the
devices or software for commercial sales. The framework
used for exercising MAT, can also be extended for any
device pre-production test cases (such as, for example,
application test cases, stress test cases) for measuring
memory health.

FIG. 1 is an example block diagram illustrating virtual
memory and physical memory organization in accordance
with embodiments of the present invention. FIG. 2 is an
example block diagram of an e-reader computing device 200
implementing the virtual and physical memory organization
illustrated in FIG. 1.

The computing device 200 includes a display component
206, which may comprise, for example, an electrophoretic
display (EPD), electrowetting display and/or any other type
of bi-stable display. In other embodiments, the display
component 206 may comprise cathode ray tubes (CRTs),
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liquid crystal display (LCD) screens, gas plasma-based flat
panel displays, LCD projectors, or other types of display
devices, etc. The computing device 200 may include one or
more input components 208 operable to receive inputs from
a user. The input component 208 can include, for example,
a push button, touch pad, touch screen, wheel, joystick,
keyboard, mouse, trackball, keypad, accelerometer, light
gun, game controller, or any other such device or element
whereby a user can provide inputs to the computing device
200. These input component 208 may be incorporated into
the computing device 200 or operably coupled to the com-
puting device 200 via wired or wireless interface. For
computing devices with touch sensitive displays, the input
component 208 can include a touch sensor that operates in
conjunction with the display component 206 to permit users
to interact with the image displayed by the display compo-
nent 206 using touch inputs (e.g., with a finger or stylus).

The computing device 200 may also include at least one
communication interface 212 comprising one or more wire-
less components operable to communicate with one or more
separate devices within a communication range of the par-
ticular wireless protocol. The wireless protocol can be any
appropriate protocol used to enable devices to communicate
wirelessly, such as Bluetooth, cellular, IEEE 802.11, or
infrared communications protocols, such as an IrDA-com-
pliant protocol. It should be understood that the computing
device 200 may also include one or more wired communi-
cations interfaces for coupling and communicating with
other devices, such as a USB port. The communication
interface 212 may be used to communicate over a wide area
network 260, such as the Internet. The computing device 200
may also include a power supply 214, such as, for example,
a rechargeable battery operable to be recharged through
conventional plug-in approaches, or through other
approaches such as capacitive charging.

The computing device 200 may also include a controller
220 comprising a processor 222 for executing instructions
and a main memory 224. The main memory 224 may be
implemented in random access memory (“RAM”), static
RAM (“SRAM”), dynamic RAM (“DRAM”), synchronous
DRAM (“SDRAM?”), or any type of volatile or non-volatile
memory.

The controller 220 may be operatively coupled to a
secondary storage 230 and other components of the device
200 over a system bus. As would be apparent to one of
ordinary skill in the art, the secondary storage 230 can
include one or more different types of memory, data storage
or computer-readable storage media, such as, for example, a
hard disk drive or flash memory storage device. The sec-
ondary storage 230 may include a virtual memory (VM)
partition 236 and a file system 240. The file system 240 may
be used to store software for execution by the processor 222,
such as, e.g., operating system software 242, a virtual
memory monitor 244, and other applications 246, and data,
such as, e.g., digital media content 248 and a memory log
250, which will be described in greater detail below.

In an exemplary embodiment, an e-reader computing
device 200 may include 256 MB of RAM for its main
memory 224 and 4 GB of flash memory for its secondary
storage 230.

Referring to FIG. 1, in computer systems implementing
virtual memory, such as computing device 200, each
instance of a program runs as a process 110a-110x, and the
memory addresses used by each process are assigned to a
virtual address space within a virtual memory address space
120. The virtual memory addresses are mapped to physical
addresses in the physical memory 130 by a memory man-
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4

agement unit. The physical memory 130 comprises the high
speed main memory 224 and the secondary storage 230.

The virtual memory address space 120 includes virtual
address spaces allocated to an application virtual machine
(e.g., C virtual machine (CVM) 210qa), a WebKit-based
rendering engine software component 2105, and a plurality
of other processes 210¢-210x used for the operation of the
device 200. An application virtual machine, sometimes
referred to as a process virtual machine, provides a platform-
independent program runtime execution environment. CVM
210a is a type of Java virtual machine designed for embed-
ded devices or other computing devices with limited hard-
ware resources. In the illustrated embodiment, the device
200 is an e-reader device and CVM 210qa is a monolithic
process used to render many of the device’s applications,
including the e-book reader application, the initial start-up
for the device 200, the Home page for the device 200,
managing settings for the device 200, the e-ink rendering
application, and the device’s middleware component for
connecting the low level kernel functionalities with e-book
services such as registration, network connectivity, down-
load manager, and other utilities. The rendering engine
software component 1105 is also a monolithic process that
renders multiple transient applications used by the e-reader
device 200.

When each process 210a-210x is first launched, a virtual
address in the virtual memory address space 120 is assigned
to that process. The currently executing processes are moved
to the main memory 224 for execution by the processor 222.
The other processes not currently being executed may be
moved to the VM partition 236 until they are needed for
execution.

In accordance with embodiments of the present invention,
a memory monitor 244 may be used to record a memory log
250 to measure memory usage and availability. The memory
monitor 244 may be implemented as part of the operating
system kernel or may be implemented as a separate appli-
cation, and may be used in production devices for monitor-
ing memory usage in end user devices or may be used with
pre-production devices for monitoring memory usage in
testing prior to commercial release. The memory monitor
244 may be programmed to perform a memory log operation
to store a current System Free Memory value and a current
Process Memory Consumption value in the memory log
250.

The current System Free Memory value can be calculated
in a variety of ways, depending on the architecture of device.
In a Linux-based system, a variety of tools, such as, for
example, a virtual memory statistics (“vmstat”) computer
system monitoring tool, a memory reporting tool (“smem”
which reports physical memory usage, taking shared
memory pages into account, and instrumented CVM code to
emit Java heap and garbage collection (“GC”) information,
can be used to collect and display summary information
about operating system memory, processes, interrupts, pag-
ing and block I/O. Active memory is the amount of memory
being used by a particular process. The vmstat tool may be
used to collect the amount of free memory (e.g., the amount
of idle memory available in the virtual memory address
space 120) and the amount of inactive memory (e.g., the
amount of memory allocated to processes that are no longer
running) available in the virtual memory address space 120.
System memory is consumed by all of the memory used by
running processes, the memory consumed by the operating
system kernel, and various caches generated at both the
kernel and application layers. The current System Free
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Memory value may be calculated by summing the amount of
free memory and inactive memory.

The System Free Memory value alone may be of limited
usefulness in monitoring memory consumption by particular
processes. When monitoring memory consumption, it is
desirable to monitor individual processes that contribute to
the system memory and also those processes’ memory
consumption. The smem tool may be used to capture process
level memory information. The instrumented CVM code
may be used to emit heap consumption. Some transient
processes when executed consume virtual memory, and
when terminated, release the virtual memory. However, the
released memory may not automatically move to inactive
memory. Some operating systems may include a kernel swap
daemon (“kswapd”), which periodically executes to move
active files into inactive files when system free memory runs
low. In some cases, until the kernel swap daemon executes
again, the memory released by the transient process may
continue to be identified by the vmstat memory monitoring
tool as active memory and therefore would not be included
in the current free memory value, even though the process
has terminated and released its memory for use by other
processes.

As described above, the System Free Memory value
identifies the total free memory available to the system as a
whole. The Process Memory Consumption value comprises
one or more memory consumption parameters and can be
used to determine the memory consumption of individual
processes by analyzing changes in those parameters over a
period of time as a variety of processes are executed. For
production devices operated by end users in the field, the
memory consumption parameters may be recorded on a
periodic schedule or in response to certain events, as will be
described in greater detail below. In a test environment, the
memory consumption parameters may be recorded after the
completion of a predetermined series of test use cases, and
at various intermediate points during the execution of those
test use cases. The memory consumption parameters for
individual processes may include one or more of the fol-
lowing: resident set size (“RSS”), proportional set size
(“PSS”), unique set size (“USS”), and anonymous page size.

The RSS is the portion of a running process’s memory
that is stored in main memory 224. The rest of the memory
for that process is stored in virtual memory partition 236 or
remains in the file system 240 if it was never loaded or was
previously unloaded. However, RSS alone may not provide
an accurate measurement of the amount of memory con-
sumed by a particular process because RSS includes in its
calculation the memory shared between that process and one
or more additional processes. Therefore, if the RSS values
for several concurrently running processes which share a
portion of memory is summed, the shared portion of
memory will be counted multiple times, since it will be
included in the RSS value associated with each of those
processes. Many processes use shared libraries, so taking a
sum of each of those RSS values would provide an inflated
indication of total memory consumption. However, the RSS
value may still be helpful because observed increases in the
RSS values can be used to identify newly added processes
which share memory with other existing processes. In addi-
tion, observed decreases in the RSS values can be used to
indicate the removal of a process/shared library or overall
memory stress of the system as a result of the swapping out
of file backed pages.

The PSS of a process is the count of pages the process has
in main memory 224, where each page is divided by the
number of processes sharing it, with each page representing
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a single block of memory used in memory management.
Accordingly, the PSS can provide a fairly accurate calcula-
tion of the total memory consumed because the sum of PSS
values for all of the processes provides a good representation
of the total overall memory usage of user space process
consumption in a system. When one of those processes
utilizing the shared library is terminated, then the amount of
PSS memory consumed by that shared library is then
distributed across the remaining processes still using that
library. When this occurs, the PSS value associated with that
terminated process will not provide an accurate representa-
tion of the total amount of memory returned to the system
after termination, since a portion of that PSS value will be
reallocated to the remaining processes and not returned as
system free memory. Therefore, the PSS alone may not
provide a complete picture of the memory usage, but can be
used as another dimension to drill down memory regressions
identified by RSS and to rule out memory spikes related to
additional process additions which share code pages. One
disadvantage of monitoring PSS in a production device is
that this monitoring may consume too many processing
resources and therefore decrease performance of the device,
decrease battery life, and degrade the user experience.

The USS is the set of pages in main memory 224 that are
unique to a process and do not include any portion of
memory shared with other processes. This is the amount of
memory that would be freed if the process was immediately
terminated. The USS is another dimension to drill down
memory regressions identified by RSS to quantify memory
solely used by that process, since the USS reflects the true
incremental cost of running a particular process. When that
process is terminated, the USS value associated with that
process is the total memory which will actually be returned
to the system as free memory. However, because the shared
memory is excluded from the USS calculation, the USS
value alone is not helpful in calculating the total memory
consumed by a particular process and should be analyzed in
conjunction with one or more additional memory consump-
tion parameters in order to obtain a complete understanding
of the memory consumption that would occur in a device.
Another disadvantage of monitoring USS in production
devices is that this monitoring, like PSS monitoring, can
impact device performance and degrade the user experience.
However, monitoring of both USS and PSS in a test envi-
ronment can be accomplished because device responsive-
ness is not critical during these memory tests.

Anonymous pages are virtual memory mappings with no
associated physical address. The anonymous page size can
be used to account for memory consumption which will not
be released until the process is terminated. Anonymous page
consumption is primarily controlled by the individual pro-
cesses, and the anonymous pages will generally only be
released if the process actively releases those pages or if the
process is terminated. Any dramatic increase in the anony-
mous page consumption may be indicative of a software bug
resulting in an overconsumption of memory. Monitoring the
anonymous page size can be helpful to identify transient
spikes in the measurement of System Free Memory that
result when a process is launched and later terminated and
releases its anonymous pages.

For example, when a pre-production software release is
tested by running the system through a predetermined set of
use cases, a memory measurement utility is run to determine
the total free memory and total inactive memory. The free
memory and inactive memory are added to obtain the total
System Free Memory after completion of those use cases. If
a second build of that same pre-production software is then



US 9,471,237 B1

7

tested through the same predetermined set of use cases, the
total System Free Memory calculated after completion of
those use cases may differ, even though the system was
performing the same tasks. This can occur due to the
variable nature of memory management. Changes in the
System Free Memory between tests can occur when a
transient process is launched in user space and then termi-
nated at different times during the tests. For example, in
operating systems utilizing the kernel swap daemon to move
active files into inactive files when system free memory runs
low, depending on the timing of when the kernel swap
daemon executes, the System Free Memory may produce
different values, even when running through the same use
case tests. The System Free Memory may vary, depending
on whether the kernel swap daemon moved active files into
inactive files prior to recording of the memory consumption
or after the recording. An analysis of the anonymous pages
during each of these tests can provide a picture of the
continuous memory usage, without including these transient
processes. If the anonymous page consumption for both tests
is in the same range, then the software developer may
conclude that the difference in System Free Memory was the
result of a transient process, such as one that was terminated
by the kernel swap daemon. This transient memory con-
sumption spike may be acceptable and not considered to be
an indication of a larger problem with the software being
tested. This can provide a more comprehensive picture of the
memory consumption that occurs over time as various
functions are performed, with numerous processes being
launched and terminated.

The memory monitor 244 may perform a memory log
operation to store the System Free Memory value and
Process Memory Consumption value under a variety of
conditions. In some embodiments, the memory log opera-
tion is performed on a regular schedule, such as, e.g., every
minute, ten minutes, fifteen minutes, half hour, hour, or any
other desired periodic schedule or interval. In some embodi-
ments, the memory log operation can be performed upon the
detection of certain events, such as, for example, a low
memory event in which a low memory condition is detected
in the main memory 224 of the device. A low memory
condition may occur when the amount of free memory in the
device’s main memory falls below a system-defined amount.
Information regarding the event which triggered the memory
log operation may also be stored in the memory log.

Any of a variety of events may be used to initiate a
memory log operation to store one or more memory param-
eter values of interest (e.g., System Free, Process Memory,
and Stack Trace). Associating various types of events with
the corresponding system memory status can provide insight
into how the applications are consuming memory and to
inform the developer when processes such as clearing an
application cache or terminating a process may be desirable.

For example, any time a low memory condition is
detected in the device, one or more of the memory parameter
values, such as, e.g., the total system level memory, may be
recorded in the memory log. Alternatively, multiple levels of
low memory conditions may each serve as events triggering
memory log operations. For example, three thresholds of
low memory events may be defined as a low memory status,
an extremely low level status, and a system critical low
memory status. Similarly, a memory log operation may be
performed every time a low memory condition in the Java
heap is detected.

The events used to initiate a memory log operation may
also include kernel level events or process level events. For
example, the memory log operation may be performed each
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time a certain kernel level or JVM low heap levels occur, or
an out-of-memory process termination process is performed.

Various process level events may also trigger memory log
operations. For example, a memory log operation may be
performed every time any application or a specified appli-
cation is launched and terminated. A memory log operation
may also be performed each time a process memory moni-
toring daemon detects that a particular process is experienc-
ing a low memory condition or an excessive memory
consumption threshold.

In accordance with embodiments of the present invention,
stack traces at the native application level can be recorded on
regular intervals or upon detection of certain memory
events. A stack trace (sometimes referred to as a backtrace)
is a list of the function calls that are currently active in a
thread. These stack traces can be associated with the virtual
machine thread stack to provide an overall picture of the
memory consumption. For example, any time the controller
220 performs a memory allocation, a stack trace may be
stored in the memory log. This stack trace may be used to
later identify the application call that was responsible for
that memory allocation. This can be accomplished by
executing a backtrace at the kernel level to provide a native
stack trace.

For a monolithic process such as CVM, which provides a
Java execution environment for multiple Java processes, the
stack traces cannot be uniquely associated with a single Java
thread. One method by which the stack traces can be
associated with individual Java threads is by modifying a
memory block allocation CVM function call (a “malloc”
function) to link the Java thread making the “malloc”
memory call to the stack trace that is recorded for that
memory allocation. In other words, each time a thread in the
CVM lJava virtual machine makes a “malloc” memory call,
a stack trace is recorded for that memory allocation and the
identity of the thread making the “malloc” call is associated
with the stack trace. This information is logged and can be
analyzed to uniquely identify the memory consumption of
individual Java threads. Similarly, a stack trace may be
recorded for every memory deallocation, and the identity of
the thread deallocating the memory is associated with that
stack trace.

In addition, when the memory allocation occurs, the
current native memory consumption and virtual machine
memory consumption may also be stored along with a
memory map, the System Free Memory value, the Process
Memory Consumption value (using, for example, the
“smemcap” function to capture detailed process memory
usage information), JVM heap information, and data
obtained using, e.g., the HPROF heap/CPU profiling tool.
This can help to identify the stack traces corresponding to
memory that has not yet been freed.

FIG. 3 is a block diagram illustrating an exemplary
environment 300 in which embodiments of the present
invention may be implemented. A plurality of production
computing devices 200 may be in communication with a test
system 310 over a wide area network 260. When these
devices 200 are operated by the end users, each of these
devices 200 will generate memory logs as described above,
storing a free memory value and a process memory con-
sumption value on a periodic schedule or in response to
certain events. The devices 200 will then send data repre-
senting those memory logs to the test system 310 for
analysis. This transmission can occur on a predetermined
schedule (e.g., once a week, once a month, once a year, etc.)
or on demand as instructed by the user of the device 200 or
in response to a request from the test system 310. These
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memory logs may be stored in a memory log database 320
and scripts may be executed by an analysis server 330 on
each memory log to extract usage data and to measure
memory consumption. The analysis server 330 may analyze
the logs to record the memory consumption information for
each device 200 and create various memory consumption
reports for all of the devices 200, as will be described in
greater detail below.

In some embodiments, the test system 310 may request
the memory logs from a subset of all of the production
devices 200 in use in the field by end users in order to obtain
data regarding memory usage by actual end users. This
subset may comprise a cross sampling of all of the devices
having a certain configuration or including a certain soft-
ware release being tested, such as, for example 30% of all of
the available devices. From this sampling of 30% of the
devices, it is expected that the devices will be used in a
variety of ways, resulting in a broad distribution of memory
consumption scenarios. For test purposes, only a certain
percentile of those devices (e.g., the 90th percentile of
memory usage, or TP90, or 99th percentile of memory
usage, or TP99) is selected for analysis. This data from the
TP90 sampling of production devices may be useful for a
variety of testing purposes, such as to identify situations in
which low memory conditions occur more frequently than
average.

For pre-production devices 200', the memory logs of the
devices 200' may be retrieved immediately after completion
of each test. The memory logs may be stored in a local
storage within each device 200' and later uploaded to a
server in the test system 310 after the test is completed.

In accordance with some embodiments, a memory accep-
tance test 340 (“MAT”) may be produced to benchmark
memory consumption under a variety of use cases for
pre-production devices undergoing testing. When perform-
ing software testing for new software releases, a plurality of
use cases are identified based on the memory logs or based
on functional requirements. These use cases are categorized
based on decreasing priority or frequency of use as PO, P1,
P2, or P3. In some embodiments, the PO and P1 use cases are
selected and used to formulate the test cases to be incorpo-
rated into the MAT collection of test templates. New pre-
production devices or pre-production software releases are
then tested using the MAT test case templates and the
memory consumption observed when cycling through the
test use cases is stored in a memory log, as described above.
The stored memory consumption values for each new soft-
ware release can then be benchmarked against the memory
consumption value thresholds set for previous releases,
obtained when applying the MAT tests to those previous
releases. Accordingly, the memory consumption values can
be used to track memory regressions against each software
build, and to enable easy debugging of memory regressions
to root cause regressions at the use case level.

Regression tracking can be performed in a variety of
ways. For example, the System Free Memory values and
Process Memory Consumption values for all test runs can be
compiled to produce minimum, maximum, and average
values for each. Any value that regresses by a predetermined
threshold, e.g., 3-5%, from baseline values or from a pre-
vious build, may be identified as a regression.

In some embodiments, multiple levels of MAT templates
may be used to test memory consumption under different
usage scenarios. For example, three levels of MAT templates
may be provided. First, a light use MAT template is gener-
ated corresponding to use cases for light users whose
expected use of the devices is not expected to consume large
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amounts of memory. This light use MAT template will
include various low impact use cases, such as downloading
and reading a small number of short books with little or no
graphics. Second, a normal use MAT template may be
generated to include the use cases corresponding to the PO
and P1 use cases described above. Third, a heavy use MAT
template may be generated corresponding to use cases for
heavy users for whom the memory consumption is expected
to be very high, such as users who frequently read e-books
containing large amounts of graphics. These multiple levels
of MAT templates can be used to test regression with a
greater level of granularity and specificity for targeting
specific types of customers.

In accordance with embodiments of the present invention,
a memory analysis application is provided to permit devel-
opers and test engineers to review the data retrieved from the
memory logs as described above. FIGS. 4A-4G are screen
shots of a browser displaying an exemplary memory analy-
sis application.

FIG. 4A illustrates a memory leaderboard 410 displaying
CVM heap memory comparisons between three different
software builds 034, 036, and 037, shown in sections 411a-
411c, respectively. Each section 411a-411¢ shows the mini-
mum, maximum, and average free CVM heap memories in
KB for all of the test runs for each build. The first row of data
412a corresponds to the memory logs recorded after the
devices are first booted and have reached a steady state
condition. The second row of data 4125 corresponds to the
memory logs recorded after the devices have been run
through a MAT template test.

FIG. 4B illustrates a memory leaderboard 420 displaying
system free memory and system anonymous page consump-
tion for software builds 034, 036, and 037. As in FIG. 4A,
the section for each build shows the minimum, maximum,
and average memory parameter values for all of the test runs
for that build.

FIG. 4C illustrates a memory leaderboard 430 displaying
the process memory consumption for the CVM process for
software builds 034, 036, and 037. The user may select one
of the buttons 432 to choose whether to display the USS,
PSS, RSS, or Anonymous Page Size in the leaderboard 430.
In FIG. 4C, the USS button has been selected, so the
leaderboard 430 displays the USS values for each of the
software builds 034, 036, and 037.

FIG. 4D illustrates a memory leaderboard 440 displaying
the process memory consumption for all stored processes in
the device.

FIG. 4E illustrates a memory leaderboard 450 displaying
the process memory consumption for two different pro-
cesses, Process A and Process B for software builds 034,
036, and 037.

FIG. 4F illustrates a memory leaderboard 460 displaying
the process memory consumption for all of the processes
running on the device being tested.

FIG. 4G illustrates a memory leaderboard 470 displaying
a list of all of the recorded events that occurred during the
execution of the MAT test suite, as well as the count of the
number of times each event occurred.

Embodiments of the present invention may provide vari-
ous advantages not provided by prior art systems. An
exemplary advantage of some disclosed embodiments may
be that memory consumption may be more precisely mea-
sured even when utilizing monolithic processes to perform
a variety of functions on a device. In addition, software
developers may use the information provided by the
memory consumption logs to better understand the memory
consumption of their applications under varying test condi-
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tions. Moreover, the MAT template may provide a standard-
ized memory test model for approving the addition of new
features to software applications prior to commercial
release.

While the invention has been described in terms of
particular embodiments and illustrative figures, those of
ordinary skill in the art will recognize that the invention is
not limited to the embodiments or figures described. Many
of the embodiments described above are directed at e-reader
devices. These systems and methods may be particularly
applicable to e-reader devices due to their limited hardware
resources and limited functionality. However, other embodi-
ments may be implemented in any type of computing device,
such as an e-reader device, a tablet computing device, a
smartphone, a media player, a portable gaming device, a
portable digital assistant, a laptop computer, a desktop
computer, and other mobile and non-mobile computing
devices. It should be understood that various types of
computing devices including a processing element and a
memory can be used in accordance with various embodi-
ments discussed herein.

Although various systems described herein may be
embodied in software or code executed by general purpose
hardware as discussed above, as an alternative the same may
also be embodied in dedicated hardware or a combination of
software/general purpose hardware and dedicated hardware.
If embodied in dedicated hardware, each can be imple-
mented as a circuit or state machine that employs any one of
or a combination of a number of technologies. These tech-
nologies may include, but are not limited to, discrete logic
circuits having logic gates for implementing various logic
functions upon an application of one or more data signals,
application specific integrated circuits having appropriate
logic gates, or other components, etc. Such technologies are
generally well known by those of ordinary skill in the art
and, consequently, are not described in detail herein. If
embodied in software, each block or step may represent a
module, segment, or portion of code that comprises program
instructions to implement the specified logical function(s).
The program instructions may be embodied in the form of
source code that comprises human-readable statements writ-
ten in a programming language or machine code that com-
prises numerical instructions recognizable by a suitable
execution system such as a processing component in a
computer system. If embodied in hardware, each block may
represent a circuit or a number of interconnected circuits to
implement the specified logical function(s).

Although the processes, flowcharts and methods
described herein may describe a specific order of execution,
it is understood that the order of execution may differ from
that which is described. For example, the order of execution
of two or more blocks or steps may be scrambled relative to
the order described. Also, two or more blocks or steps may
be executed concurrently or with partial concurrence. Fur-
ther, in some embodiments, one or more of the blocks or
steps may be skipped or omitted. It is understood that all
such variations are within the scope of the present disclo-
sure.

Also, any logic or application described herein that com-
prises software or code can be embodied in any non-
transitory computer-readable medium for use by or in con-
nection with an instruction execution system such as a
processing component in a computer system. In this sense,
the logic may comprise, for example, statements including
instructions and declarations that can be fetched from the
computer-readable medium and executed by the instruction
execution system. In the context of the present disclosure, a
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“computer-readable medium” can be any medium that can
contain, store, or maintain the logic or application described
herein for use by or in connection with the instruction
execution system. The computer-readable medium can com-
prise any one of many physical media such as, for example,
magnetic, optical, or semiconductor media. More specific
examples of a suitable computer-readable media include, but
are not limited to, magnetic tapes, magnetic floppy diskettes,
magnetic hard drives, memory cards, solid-state drives, USB
flash drives, or optical discs. Also, the computer-readable
medium may be a random access memory (RAM) including,
for example, static random access memory (SRAM) and
dynamic random access memory (DRAM), or magnetic
random access memory (MRAM). In addition, the com-
puter-readable medium may be a read-only memory (ROM),
a programmable read-only memory (PROM), an erasable
programmable read-only memory (EPROM), an electrically
erasable programmable read-only memory (EEPROM), or
other type of memory device.

It should be emphasized that the above-described embodi-
ments of the present disclosure are merely possible
examples of implementations set forth for a clear under-
standing of the principles of the disclosure. Many variations
and modifications may be made to the above-described
embodiment(s) without departing substantially from the
spirit and principles of the disclosure. All such modifications
and variations are intended to be included herein within the
scope of this disclosure and protected by the following
claims.

What is claimed is:

1. A computer-implemented method of tracking memory
usage in an e-reader device comprising a processor, an
electrophoretic display, a non-transitory main memory hav-
ing a total capacity of less than 2 GB, and a non-transitory
secondary storage, the method comprising:

executing a Java virtual machine application for display-

ing digital media content on the electrophoretic display;
performing a first memory log operation on the e-reader
device on a predetermined schedule; and

performing a second memory log operation on the

e-reader device upon detection of a low memory con-
dition;

wherein the first memory log operation and the second

memory log operation each comprise:

storing a system free memory value associated with a
virtual memory on the device in a memory log on the
secondary storage, the system free memory value
comprising a sum of free memory plus inactive
memory, wherein said free memory comprises an
amount of idle memory available in the virtual
memory and the inactive memory comprises an
amount of memory in the virtual memory allocated
to processes that are not currently running; and

storing a current resident set size for a first running
process in the memory log on the secondary storage,
the resident set size comprising an amount of
memory for the first running process stored in main
memory.

2. The method of claim 1, further comprising:

in response to receiving a request from a remote test

server, sending data representing the memory log to the
remote test server for analysis with memory logs from
a plurality of other e-reader devices to enable genera-
tion of an average system free memory for the plurality
of other e-reader devices and the e-reader device.
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3. The method of claim 1, further comprising:

in response to detecting a low memory condition in which
an amount of free memory in the main memory is
determined to be below a system-defined amount,
storing in the memory log a stack trace list of function
calls currently active for each thread executing in the
virtual machine.

4. A computer-implemented method of tracking memory
usage in a computing device comprising a processor, a
non-transitory main memory, and a non-transitory secondary
storage, the method comprising:

performing a first memory log operation on a predeter-

mined schedule;

determining an event occurred at the computing device;

and

performing a second memory log operation;

wherein performing the first memory log operation and

performing the second memory log operation each

comprise:

storing a free memory value associated with the device
in a memory log on the secondary storage; and

storing a process memory consumption value associ-
ated with the device in the memory log on the
secondary storage.

5. The method of claim 4, further comprising:

sending data representing the memory log to a manage-

ment system via a wide area network.

6. The method of claim 4, wherein:

the performing the second memory log operation com-

prises performing the second memory log operation
based on determination of a low memory event occur-
ring at the computing device.

7. The method of claim 4, further comprising:

in response to detection of a memory event, storing a

stack trace in the memory log.

8. The method of claim 7, wherein:

the storing the stack trace in the memory log comprises

storing the stack trace in the memory log in response to
detection of at least one of a memory allocation or a
memory deallocation.

9. The method of claim 7, further comprising:

in response to detection of the memory event, storing a

native memory consumption and a virtual machine
memory consumption.

10. The method of claim 7, further comprising:

in response to detection of the memory event, storing a

memory map indicating a current allocation of virtual
memory.

11. The method of claim 4, further comprising:

executing a virtual machine with a virtual memory heap;

wherein performing the first memory log operation and
performing the second memory log operation each
further comprise storing a virtual memory heap avail-
ability.

12. The method of claim 4, wherein the computing
devices comprises an e-reader device, and further compris-
ing:

executing a virtual machine process for displaying digital

content.
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13. The method of claim 4, further comprising:

performing a third memory log operation upon boot-up of
the computing device.

14. A computing device, comprising:

a non-transitory main memory;

a non-transitory secondary memory configured to store
machine-readable instructions;

a display component;

a communications interface;

a processing element communicatively coupled to the
main memory, the secondary memory, the display
component, and the communications interface, the pro-
cessing element configured to execute the machine-
readable instructions to:
perform a first memory log operation on a predeter-

mined schedule;
determine an event occurred at the computing device;
and
perform a second memory log operation;
wherein the first memory log operation and the second
memory log operation each cause the computing
device to:
store a free memory value associated with the device
in a memory log on the secondary storage; and
store a process memory consumption value associ-
ated with the device in the memory log on the
secondary storage.
15. The computing device of claim 14, wherein the

processing element is further configured to execute the
machine-readable instructions to:

send data representing the memory log to a management
system via a wide area network.
16. The computing device of claim 14, wherein the

processing element is further configured to execute the
machine-readable instructions to:

perform the second memory log operation by performing
the second memory log operation based on determining
of a low memory event occurring at the computing
device.

17. The computing device of claim 14, wherein:

the free memory value comprises a sum of free memory
plus inactive memory.

18. The computing device of claim 14, wherein:

the process memory consumption value comprises one or
more of the following: a resident set size, a proportional
set size, a unique set size, or an anonymous page size.

19. The computing device of claim 14, wherein:

the first memory log operation and the second memory
log operation each further cause the computing device
to store a total system level memory.

20. The computing device of claim 14, wherein the

processing element is further configured to execute the
machine-readable instructions to:

perform the second memory log operation by storing
information regarding the determined event in the
memory log.



